Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Chem ; 94(48): 16967-16974, 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2133136

ABSTRACT

Capable of precise simultaneous multitarget identifications within a minimized sample, optical multiplexing is vital for accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) while remaining spectral crowding and background interfering. In merits of an autofluorescence-free background and high-capability throughput, a persistent luminescence (PersL) lifetime/color binary encoding strategy was herein proposed for SARS-CoV-2 diagnosis. Based on luminescence resonance energy transfer processes, the intense lifetimes and representative emissions of PersL nanoplatforms were rationally manipulated to create a temporal coding dimension within a wide seconds-to-minutes range through three individual channels. Particularly, at least four populations of barcoding in a certain channel were successfully decoded by a purpose-built time-resolved PersL technology. As a proof-of-concept, functionalized PersL nanoplatforms were further well developed for the simultaneous quantification of five-plex SARS-CoV-2 biomarkers with limits of detection in the subnanomolar range. Remarkably, PersL nanoplatforms enabled a highly differentiable discrimination of multitargets at various concentrations of ultralow background and high-fidelity resolutions, thereby advancing a powerful tool for optical multiplexing in biomedical applications.


Subject(s)
COVID-19 , Luminescence , Humans , SARS-CoV-2 , COVID-19 Testing , COVID-19/diagnosis , Fluorescence Resonance Energy Transfer
SELECTION OF CITATIONS
SEARCH DETAIL